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Ladislav Hlavatý and Miroslav Turek

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University
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1. Introduction

One of the most important and well known aspects of the string theory is its relation to

the gravitation. One of the tools for investigating its properties are conformally invariant

σ-models in nontrivial backgrounds. They are given by metric, torsion and dilaton field

satisfying the so called vanishing β function equations. Their solution is in general a difficult

problem and various low dimensional versions are studied to get a better insight into this

problem. The main goal of this paper is construction of new three-dimensional σ-models,

more precisely, their dilatons. We get them by the Poisson-Lie T-plurality procedure given

in [1] and investigate the restrictions following from the requirement that the dilatons do

not depend on auxiliary variables appearing in the method.

In the paper [2] we have investigated conformally invariant three-dimensional σ-models

on solvable Lie groups that were Poisson-Lie T-dual or plural to σ-models in the flat

background with the constant dilaton. Several of them were nontrivial in the sense that they

lived in a curved background and had nonvanishing torsion. We have analyzed conditions
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for construction of dual dilatons by the plurality procedure and found that in some cases

we were not able to construct the dual dilaton fields because necessary conditions for

application of Poisson-Lie transformation were not satisfied for the constant dilaton of

the flat model. In this paper we shall show that these conditions can be satisfied for more

general dilatons easily obtainable in terms of the Riemannian coordinates of the flat metrics

and we are going to investigate their dual dilatons.

There are two important types of coordinates on the manifolds where the σ-models

live. The first one is given by the Lie group structure and follows from the possibility to

express the elements of the Lie group (at least in the vicinity of the unit) as a product

of elements of one-parametric subgroups. The Poisson-Lie T-dual σ-models are usually

expressed in terms of these group coordinates. The other type of coordinates are those in

which the metric on the manifold have a special simple form. They are called Riemannian

coordinates (see e.g. [3]). The Riemannian coordinates for the flat metrics1 will be called

flat coordinates here. In these coordinates the metric tensors become constant and the

Christoffel symbols vanish. The equations of motion (1.2) as well as the vanishing β

function equations (1.5)–(1.7) become very simple. That’s why it is very desirable to find

the transformation between the group and Riemannian coordinates of the σ-models.

In this paper we shall give explicit forms of transformations between these two types

of group coordinates, i.e. we are going to express the Riemannian coordinates of the flat

metric in parameters of its solvable isometry subgroups. This will enable us to write down

the general form of the dilaton field satisfying the vanishing β function equations for the

flat model in terms of the group coordinates and consequently the dilaton fields of the dual

or plural models in curved backgrounds.

To set our notation let us very briefly review the construction of the Poisson-Lie T-

plural σ-models by means of Drinfel’d doubles (For more detailed description see [4], [5], [1],

[2]). Principal σ-model can be defined as a field theory on a Lie group G on which a

covariant second order tensor field F is given. The action of the σ-model then is

SF [φ] =

∫
d2x∂−φiFij(φ)∂+φj (1.1)

where φ : R
2 → R

n, n = dim G. The equations of motion have the form

∂−∂+φj + γj
rs∂−φr∂+φs = 0, (1.2)

where

γj
rs =

1

2
Gji(Fis,r + Fri,s − Frs,i) (1.3)

and Gji is the inverse of

Gij =
1

2
(Fij + Fji). (1.4)

Quantization of the σ-models requires that they be made conformal invariant. This is

achieved by addition of another term depending on a scalar (dilaton) field Φ to the action

(1.1). To guarantee the conformal invariance of the σ-model (at least at the one-loop level)

1More strictly we should speak about pseudometrics as we do not require the positive definiteness.
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the fields F and Φ must satisfy the so called vanishing β function equations

0 = Rij −5i 5j Φ −
1

4
HimnHmn

j , (1.5)

0 = Hkij 5
k Φ + 5kHkij, (1.6)

0 = R − 2 5k 5
kΦ −5kΦ 5k Φ −

1

12
HkmnHkmn, (1.7)

where covariant derivatives 5k, Ricci tensor Rij and scalar curvature R are calculated from

the (pseudo)metric (1.4) that is also used for lowering and raising indices. The components

of torsion are defined as

Hijk = ∂iBjk + ∂jBki + ∂kBij , (1.8)

where

Bij =
1

2
(Fij − Fji). (1.9)

We shall be interested in σ-models that satisfy the vanishing β function equations and

moreover are Poisson-Lie T- dualizable i.e. satisfy [5]

Lvi
(F )µν = Fµκvκ

j f̃ jk
i vλ

kFλν , i = 1, . . . ,dim G, (1.10)

where vi form a basis of left-invariant fields on G and f̃ jk
i are structure coefficients of a Lie

group G̃ such that dim G̃ = dim G. If F satisfies the equation (1.10) then the equations

of motion of the σ-model can be rewritten (see [4, 5]) as equations for maps to the six-

dimensional Drinfel’d double D = (G|G̃) — connected Lie group whose Lie algebra D

admits a decomposition into two subalgebras that are maximally isotropic with respect

to a bilinear, symmetric, nondegenerate, ad-invariant form on D. This decomposition

D = (G|G̃) is called the Manin triple.

The Lagrangian of dualizable σ-models can be written in terms of right-invariant fields

on a Lie group G that is a subgroup of the Drinfel’d double as

L = Fij(φ)∂−φi∂+φj = Eab(g)(∂−gg−1)a(∂+gg−1)b. (1.11)

The functions φ are obtained by the composition φj = yj ◦ g of a map g : R
2 → G and a

coordinate map y : Ug → R
n of a neighborhood of an element g(x+, x−) ∈ G,

E(g) = (E−1
0 + Π(g))−1, Π(g) = b(g)a(g)−1 = −Π(g)t, (1.12)

and a(g), b(g), d(g) are submatrices of the adjoint representation of the group G on the Lie

algebra of the Drinfel’d double 2

Ad(g)t =

(
a(g) 0

b(g) d(g)

)
. (1.13)

The main problem of this paper is solution of the equations (1.5)–(1.7) and we shall

use the flat coordinates and the Poisson-Lie transformations of dilatons to solve them.

2t denotes transposition.
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2. Poisson-Lie transformation

The fact that for a Drinfel’d double several decompositions of its Lie algebra D into Manin

triples (G|G̃) may exist leads to the notion of Poisson-Lie T-plurality [1]. Namely, let

{Xj , X̃
k}, j, k ∈ {1, . . . , n} be generators of Lie subalgebras G, G̃ of the Manin triple

associated with the Lagrangian (1.11) and {Uj , Ũ
k} are generators of some other Manin

triple (GU |G̃U ) of the same Drinfel’d double related by the 2n × 2n transformation matrix

as (
~X
~̃X

)
=

(
P T

R S

) (
~U
~̃U

)
, (2.1)

where
~X = (X1, . . . ,Xn)t, . . . , ~̃U = (Ũ1, . . . , Ũn)t.

The transformed model is then given by the Lagrangian of the form (1.11) but with E(g)

replaced by

ẼU (gu) = M(N + ΠU M)−1 = (Ẽ−1
0 + ΠU )−1, (2.2)

where

M = StE0 − T t, N = P t − RtE0, Ẽ0 = MN−1 (2.3)

and ΠU is calculated by (1.12) from the adjoint representation of the group GU generated

by {Uj}. Note that for P = S = 0, T = R = 1 we get the dual model with Ẽ0 = E−1
0 ,

corresponding to the interchange G ↔ G̃ so that the duality transformation is a special

case of the plurality transformation (2.1) – (2.3).

For the quantum σ-models the Poisson-Lie transformation of the tensor F that follows

from (2.2) must be accompanied by the transformation of the dilaton [1]

ΦU = Φ + ln|Det(N + ΠUM)| − ln|Det(1 + ΠE0)| + ln|Det aU | − ln|Det a| (2.4)

where ΠU , aU , are calculated by (1.12) and (1.13) but from the adjoint representation of

the group GU . The transformed dilaton ΦU then satisfy the vanishing β function equations

if the dilaton Φ does.

Unfortunately, the right-hand side of the formula (2.4) may depend on the coordinates

of the auxiliary group G̃. That’s why the transformation of the dilaton field cannot be

applied in general but only if the following theorem holds [2]

Theorem 1. The dilaton (2.4) for the model defined on the group GU exists if and only if

ŨΦ(0)(g.g̃) =
d

dt
Φ(0)

(
g.g̃. exp(tŨ)

)
|t=0 = 0, ∀g ∈ GU , ∀g̃ ∈ G̃U , ∀Ũ ∈ G̃U , (2.5)

where Ũ ∈ G̃U is extended as a left-invariant vector field on D and

Φ(0)(g) = Φ(g) − ln|Det(1 + Π(g)E0)| − ln|Det a(g)|. (2.6)

For applications it is much easier to check a weaker necessary condition.
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Theorem 2. A necessary condition for the existence of the dilaton (2.4) for the model

defined on the group GU is

ŨΦ(0)(e) =
d

dt
Φ(0)(exp(tŨ))|t=0 = 0, ∀Ũ ∈ G̃U , (2.7)

where e is the unit of the Drinfel’d double D.

For parametrization of g ∈ G in the form

g(y) = exp(y1X1) exp(y2X2) exp(y3X3), (2.8)

where yj are coordinates on the group manifold and Xj are generators of the corresponding

Lie algebra, the condition (2.7) can be rewritten (see [2]) as

Rjk ∂Φ(0)(y)

∂yj
|y=0 = 0, (2.9)

where R is the submatrix in (2.1).

For some of the σ-models with constant dilaton field the condition (2.9) could not be

satisfied and in those cases we were not able to find the transformed dilaton ΦU that satisfy

the vanishing β function equations. The possibility to find the general dilaton fields for the

flat models offers a possibility to overcome this obstacle and obtain more general dilatons

in curved backgrounds.

3. Flat models and their Riemannian coordinates

In the paper [2] the semiabelian Drinfel’d doubles (G|1), for which G in the decomposi-

tion (G|G̃) are solvable Bianchi algebras 2,3,4,5,60,70 (see [6, 7]) and G̃ is the three-

dimensional Abelian Lie algebra, were investigated and a classification of conformal invari-

ant Poisson-Lie T-dualizable σ-models with constant dilaton field was done. All the models

were torsionless and flat in the sense that their Riemann-Christoffel tensor vanishes.

The flat (pseudo)metrics corresponding to the investigated Drinfel’d doubles expressed

in the group coordinates are

(2|1) :

G(y)ij =




0 u v

u q g + uy2

v g + uy2 r + 2vy2


 , (3.1)

(3|1) :

G(y)ij =




p u + ze−2y1 −u + ze−2y1

u + ze−2y1 q −q

−u + ze−2y1 −q q


 , (3.2)

(4|1) :
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G(y)ij =




p (vy1 + u)e−y1 ve−y1

(vy1 + u)e−y1 qe−2y1 0

ve−y1 0 0


 , (3.3)

(5|1) :

G(y)ij =




p ue−y1 ve−y1

ue−y1 g2

r
e−2y1 ge−2y1

ve−y1 ge−2y1 re−2y1


 , (3.4)

(60|1) :

G(y)ij =




p 0 v + py2

0 −p g − py1

v + py2 g − py1 r + 2gy1 + 2vy2 + p(y2
2 − y2

1)


 ,

(3.5)

(70|1) :

G(y)ij =




p 0 z + py2

0 p g − py1

z + py2 g − py1 r − 2gy1 + 2zy2 + p(y2
1 + y2

2)




(3.6)

where u, v, p, q, g, r, z are arbitrary real constants.

Beside these models, solutions of the vanishing β function equations with flat met-

rics and nonconstant dilaton fields Φ were found by the Poisson-Lie T-plurality (1|60) ∼=

(5ii|60) ∼= (60|1). The metrics and the dilaton fields expressed in the group coordinates

read

(1|60) :

G(y)ij = K(y1, y2)
−1




−k2qy1
2 k2qy1y2 −k(1 + ky1)

k2qy1y2 q(−1 + k2y2
2) k2y2

−k(1 + ky1) k2y2 0


 , (3.7)

Φ = ln |(K(y1, y2)| + C, (3.8)

where k, q are constants and

K(y1, y2) = 1 + 2ky1 + k2(y1
2 − y2

2).

(5ii|60) :

G(y)11 =
q (w2 − 1)

4W (y1, y2)
(1 + e2y1+2y2 − 2 e2y1+y2)2,

G(y)21 =
q

4W (y1, y2)
(1 − 2e2y1+y2 + e2y1+y2)

(
w2(1 − 2ey1 + e2y1+2y2) − 1 − e2y1+2y2

)
,

G(y)22 =
q

4W (y1, y2)

(
w2(1 − 2ey1 + e2y1+2y2)2 − (1 + e2y1+2y2)2

)
,

G(y)31 =
w

2W (y1, y2)
ey1+y2

(
(2e2y1+y2 − e2y1+2y2)(w − 1) − w − 1

)
, (3.9)
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G(y)32 =
w

2W (y1, y2)
ey1+y2

(
2w ey1 − e2y1+2y2(w − 1) − w − 1

)
,

G(y)33 = 0

Φ = ln
∣∣∣(1 + w)e−(y1+y2) + w(1 − 2e−y2)

∣∣∣ + ln
∣∣(w − 1)ey1+y2 − w

∣∣ + C, (3.10)

where w is a constant and

W (y1, y2) = ey1+y2((w − 1) ey1+y2 − w)(1 + w − 2w ey1 + w ey1+y2).

All the models can also have nonzero antisymmetric part B of the tensor F but the

corresponding torsions Hijk given by (1.8) are zero so that we shall assume that Fij = Gij

in the following. In spite of the fact that all the metrics above are flat, the task to find

coordinates for which the metrics become constant is not trivial.

For finding the flat coordinates we shall use the formula for transformation of the

Levi-Civita connection

Γi
jk(y) =

1

2
Gli

(∂Gkl

∂yj
+

∂Gjl

∂yk
−

∂Gkj

∂yl

)
. (3.11)

that reads as

Γi
jk(y) =

∂yi

∂ξl

∂ξm

∂yj

∂ξn

∂yk

Γ′l
mn(ξ) +

∂yi

∂ξl

∂2ξl

∂yj∂yk

. (3.12)

The components of Γ′l
mn(ξ) in the flat coordinates vanish and we get the system of partial

differential equations for ξ(y)

∂2ξi

∂yj∂yk

= Γl
jk

∂ξi

∂yl

. (3.13)

The system is linear and moreover separated with respect to the unknowns ξi’s. The possi-

bility to solve it explicitly depends on the form of Γl
jk. We were able to find general explicit

solutions for the metrics given above that together with the suitable initial conditions will

produce the Riemannian coordinates. The initial condition

[
∂ξk

∂yi

]

~y=~0

= δi
k (3.14)

produce the coordinates in which the metric acquires the constant form G̃(ξ) = G(y = 0)

that can be further diagonalized.

In the following we shall present solution of the equations (3.13) in detail for the metric

(3.5) and write down the results for the other metrics. The flat coordinates for the metric

(3.1) were used in [8] for solution of equations of motion of a model in curved background.

The flat coordinates for the metrics (3.7) and (3.9) produce dilatons that generalize (3.8)

and(3.10) and provide an independent check of the formula (2.4). The flat coordinates for

the metrics (3.3) and (3.4) will be used for finding nonconstant dilatons in models with

curved backgrounds in the next section.
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3.1 Solving the equations for flat coordinates of the σ-model on (60|1)

The nonzero components of the affine connection for the metric (3.5) are

Γ1
23 = 1 , Γ1

33 =
−g + py1

p
,

Γ2
13 = 1 , Γ2

33 =
v + py2

p
, (3.15)

so that the equations (3.13) read

∂2ξ

∂y1∂y1
= 0, (3.16)

∂2ξ

∂y1∂y2
= 0, (3.17)

∂2ξ

∂y1∂y3
=

∂ξ

∂y2
, (3.18)

∂2ξ

∂y2∂y2
= 0, (3.19)

∂2ξ

∂y2∂y3
=

∂ξ

∂y1
, (3.20)

∂2ξ

∂y3∂y3
=

(
−g + py1

p

)
∂ξ

∂y1
+

(
v + py2

p

)
∂ξ

∂y2
. (3.21)

From (3.16) and (3.17) we get

ξ = f(y3) y1 + h(y2, y3) (3.22)

and the equations (3.19) and (3.18) imply

h(y2, y3) = f ′(y3) y2 + b(y3). (3.23)

The equation (3.20) gives

f(y3) = cey3 + de−y3 (3.24)

and from (3.21) we get the equation for the function b

d2b

dy3
2 = −

g

p
(cey3 + de−y3) +

v

p
(cey3 − de−y3)

solved by

b(y3) = −
g

p

(
cey3 + de−y3

)
+

v

p

(
cey3 − de−y3

)
+ my3 + n. (3.25)

The general solution of the system (3.16)–(3.21) then is

ξ(y1, y2, y3) = c(y1+y2)e
y3 +d(y1−y2)e

−y3 +
c(v − g)

p
ey3 −

d(v + g)

p
e−y3 +my3+n, (3.26)
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where m,n, c, d are integration constants. As the transformation formulas (3.13) are the

same for all the coordinate components ξi we can write the flat coordinates in general as

ξ1(y1, y2, y3) = c1(y1 + y2)e
y3 + d1(y1 − y2)e

−y3 +
c1(v − g)

p
ey3 −

d1(v + g)

p
e−y3

+ m1y3 + n1,

ξ2(y1, y2, y3) = c2(y1 + y2)e
y3 + d2(y1 − y2)e

−y3 +
c2(v − g)

p
ey3 −

d2(v + g)

p
e−y3

+m2y3 + n2,

ξ3(y1, y2, y3) = c3(y1 + y2)e
y3 + d3(y1 − y2)e

−y3 +
c3(v − g)

p
ey3 −

d3(v + g)

p
e−y3

+m3y3 + n3. (3.27)

and the integration constants will be determined by the required form of the constant

metric. When we choose [
∂ξk

∂yi

]

~y=~0

= δk
i

then

ξ1(y1, y2, y3) = y1 cosh(y3) + y2 sinh(y3) +
v

p
sinh(y3) −

g

p
cosh(y3) −

v

p
y3 + n1,

ξ2(y1, y2, y3) = y1 sinh(y3) + y2 cosh(y3) +
v

p
cosh(y3) −

g

p
sinh(y3) +

g

p
y3 + n2,

ξ3(y1, y2, y3) = y3 + n3. (3.28)

and

G̃(ξ) =




p 0 v

0 −p g

v g r


 . (3.29)

This constant form can be transformed by linear transformation

y′1 =
(√

|p|
)

ξ1 + ε

(
v√
|p|

)
ξ3,

y′2 =
(√

|p|
)

ξ2 − ε

(
g√
|p|

)
ξ3,

y′3 =

(√∣∣∣∣r +

(
g2

p
−

v2

p

)∣∣∣∣

)
ξ3, (3.30)

where

ε = sign(p), λ = sign

(
r +

g2

p
−

v2

p

)

(for p = 0 or r + g2

p
− v2

p
= 0 the metric is not invertible) to the diagonal form

G′(y′) =




ε 0 0

0 −ε 0

0 0 λ


 . (3.31)
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Solution of equations (3.13) for the other metrics is a bit more complicated, neverthe-

less, we were able to find the flat coordinates in all investigated cases. Results are given

below.

3.2 Flat coordinates for the σ-model on (2|1)

The nonzero components of the affine connection for the metric (3.1) are

Γ1
22 =

−u2g − u3y2 + uvq

u2r − 2uvg + v2q
, Γ1

23 =
−vug − u2vy2 + v2q

u2r − 2uvg + v2q
, Γ1

33 =
−vur − uv2y2 + v2g

u2r − 2uvg + v2q
,

Γ2
22 =

−u2v

u2r − 2uvg + v2q
, Γ2

23 =
−uv2

u2r − 2uvg + v2q
, Γ2

33 =
−v3

u2r − 2uvg + v2q
,

Γ3
22 =

u3

u2r − 2uvg + v2q
, Γ3

23 =
u2v

u2r − 2uvg + v2q
, Γ3

33 =
uv2

u2r − 2uvg + v2q
.

(3.32)

The general solution of the equations (3.13) is

ξ(y1, y2, y3) = a − 6d(uρ − vω)2y1 + b Y + c Y 2 + d(uρ − vω)Y 3 +

(2c − 6dρω)Z + 3duv Z2 − 6dvω Y Z (3.33)

where a, b, c, d are integration constants and

Y = u y2 + v y3, Z = ω y2 + ρ y3,

ω = g u − q v, ρ = r u − g v.

When we choose the initial conditions (3.14) then the flat coordinates in terms of the group

coordinates are

ξ1(y1, y2, y3) =

(
6y1u

2r − 12y1uvg + 6y1v
2q − 3u2y2

2g + 3uy2
2vq − u3y2

3
)

6(u2r − 2uvg + v2q)

+
(−3u2vy3y2

2 − 3uy2v
2y3

2 − 6uy2vy3g + 6y2v
2y3q − v3y3

3)

6(u2r − 2uvg + v2q)

+
(v2y3

2g − vy3
2ur)

2(u2r − 2uvg + v2q)
+ d1,

ξ2(y1, y2, y3) =
(−u2vy2

2 − 2uv2y3y2 + 2ru2y2 − 4uvy2g + 2y2v
2q − v3y3

2)

2(u2r − 2uvg + v2q)
+ d2,

ξ3(y1, y2, y3) =
(u3y2

2 + 2u2vy3y2 + uv2y3
2 + 2y3u

2r − 4vy3ug + 2v2y3q)

2(u2r − 2uvg + v2q)
+ d3 (3.34)

and

G̃(ξ) =




0 u v

u q g

v g r


 . (3.35)

By the linear transformation

y′1 =

(
u

ε
√

|q|

)
ξ1 +

(√
|q|

)
ξ2 +

(
g

ε
√

|q|

)
ξ3,
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y′2 =

(
u√
|q|

)
ξ1 +

((
ug

|q|
−

v

ε

)(√
|q|

u

))
ξ3,

y′3 =

√√√√
∣∣∣∣∣

(
gu

q
− v

)2 q

u2
−

g2

q
+ r

∣∣∣∣∣ ξ3, (3.36)

where

ε = sign(q), λ = sign

((
gu

q
− v

)2 q

u2
−

g2

q
+ r

)

we can transform the metric tensor (3.1) to the constant diagonal form

G′(y′) =




ε 0 0

0 −ε 0

0 0 λ


 . (3.37)

3.3 Flat coordinates for the σ-model on (3|1)

The nonzero components of the affine connection for the metric (3.2) are

Γ1
11 = −2 , Γ2

11 =
(pq − u2)e2y1 + zu

qz
, Γ3

11 =
(pq − u2)e2y1 − zu

qz
. (3.38)

The general solution of the equations (3.13) is

ξ(y1, y2, y3) = cy3 + ay2 +
u(a − c)

2q
y1 +

(pq − u2)(a + c)

8qz
e2y1 + de−2y1 + b, (3.39)

where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) = −
1

2
e−2y1 + b1,

ξ2(y1, y2, y3) = y2 +
u

2q
y1 +

(pq − u2)

8qz
e2y1 +

(pq − u2 + 2uz)

8qz
e−2y1 , (3.40)

+b2, (3.41)

ξ3(y1, y2, y3) = y3 −
u

2q
y1 +

(pq − u2)

8qz
e2y1 +

(pq − u2 − 2uz)

8qz
e−2y1

+b3,

and

G̃(ξ) =




p u + z z − u

u + z q −q

z − u −q q


 . (3.42)

By the linear transformation

y′1 =
(√

|p|
)

ξ1 +

(
u + z

ε
√

|p|

)
ξ2 +

(
z − u

ε
√

|p|

)
ξ3,
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y′2 =

(√∣∣∣∣q −
(u + z)2

p

∣∣∣∣

)
ξ2 −




δ
(
q + (z2−u2)

p

)

√∣∣∣q − (u+z)2

p

∣∣∣


 ξ3,

y′3 =




√√√√√√

∣∣∣∣∣∣∣
q −

(
z2−u2

p
+ q

)2

(
q − (u+z)2

p

) −
(z − u)2

p

∣∣∣∣∣∣∣


 ξ3, (3.43)

where

ε = sign(p), δ = sign

(
q −

(u + z)2

p

)
, λ = sign


q −

(
z2−u2

p
+ q

)2

(
q − (u+z)2

p

) −
(z − u)2

p




we can transform the metric tensor (3.2) to the constant diagonal form

G′(y′) =




ε 0 0

0 δ 0

0 0 −λ


 . (3.44)

3.4 Flat coordinates for the σ-model on (4|1)

The nonzero components of the affine connection for the metric (3.3) are

Γ1
11 = −1 Γ2

11 =
v

q
ey1 Γ2

12 = −1

Γ2
21 = −1 Γ3

11 =

(
p

v
−

u

q
−

v

q
y1

)
ey1 Γ3

12 =
u

v
+ y1

Γ3
22 =

q

v
e−y1 .

(3.45)

The general solution of the equations (3.13) is

ξ(y1, y2, y3) = cy3 +
qc

2v
y2
2e

−y1 + ay2e
−y1 + cy1y2 +

cu

v
y2 − cy2 +

av

q
y1

+
pc

2v
ey1 +

cv

2q
ey1 + de−y1 + b, (3.46)

where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) = −e−y1

ξ2(y1, y2, y3) = y2e
−y1 +

v

q
y1 +

v

q
e−y1

ξ3(y1, y2, y3) =
(pq − 2uv)

2qv
e−y1 +

v

2q
e−y1 + y3 +

q

2v
y2
2e

−y1 + y1y2 +
u

v
y2

−y2 +
p

2v
ey1 −

u

v
y2e

−y1 + y2e
−y1 +

(v − u)

q
y1 −

v

2q
ey1 .

(3.47)
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and

G̃(ξ) =




p u v

u q 0

v 0 0


 . (3.48)

By the linear transformation

y′1 =
√

|q|ξ2 +
εu√
|q|

ξ1,

y′2 =

√∣∣∣∣p −
u2

q

∣∣∣∣ξ1 +




δv√∣∣∣p − u2

q

∣∣∣


 ξ3,

y′3 =




√√√√
∣∣∣∣∣

v2

p − u2

q

∣∣∣∣∣


 ξ3, (3.49)

where

ε = sign(q), δ = P sign

(
p −

u2

q

)
, λ = sign

(
v2

u2

q
− p

)

we can transform the metric tensor (3.3) to the constant diagonal form

G′(y′) =




ε 0 0

0 δ 0

0 0 −λ


 . (3.50)

3.5 Flat coordinates for the σ-model on (5|1)

The nonzero components of the affine connection for the metric (3.4) are

Γ1
11 = −1 Γ2

11 =
rp

(ur − vg)
ey1 Γ2

12 =
gv

(ur − vg)

Γ2
13 =

vr

(ur − vg)
Γ2

22 =
g2

(ur − vg)
e−y1 Γ2

23 =
gr

(ur − vg)
e−y1

Γ2
33 =

r2

(ur − vg)
e−y1 Γ3

11 = −
pg

(ur − vg)
ey1 Γ3

21 = −
ug

(ur − vg)

Γ3
22 = −

g3

r(ur − vg)
e−y1 Γ3

31 = −
ur

(ur − vg)
Γ3

32 = −
g2

(ur − vg)
e−y1

Γ3
33 = −

gr

(ur − vg)
e−y1 .

(3.51)

The general solution of the equations (3.13) is

1

2
ap ey1 + a (uy2 + vy3) + e−y1

(
(gy2 + ry3)(2cr + ary3 + agy2)

2r
− b

)
+ d, (3.52)
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where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) = −e−y1 + d1

ξ2(y1, y2, y3) =
p r cosh y1 + r(uy2 + vy3) + e−y1

(
1
2(gy2 + ry3)

2 − v(gy2 + ry3)
)

ru − gv
+ d2

ξ3(y1, y2, y3) =
−p g cosh y1 − g(uy2 + vy3) + e−y1

(
− g

2r
(gy2 + ry3)

2 + u(gy2 + ry3)
)

ru − gv
+ d3

and

G̃(ξ) =




p u v

u g2

r
g

v g r


 . (3.53)

By the linear transformation

y′1 =
(√

|p|
)

ξ1 +

(
u

ε
√

|p|

)
ξ2 +

(
v

ε
√

|p|

)
ξ3,

y′2 =

(√∣∣∣∣
u2

p
−

g2

r

∣∣∣∣

)
ξ2 +




δ
(

vu
p
− g

)

√∣∣∣u2

p
− g2

r

∣∣∣


 ξ3,

y′3 =




√√√√√√

∣∣∣∣∣∣∣
r −

v2

p
+

(
vu
p
− g

)2

(
u2

p
− g2

r

)

∣∣∣∣∣∣∣


 ξ3, (3.54)

where

ε = sign(p), δ = sign

(
u2

p
−

g2

r

)
, λ = sign


r −

v2

p
+

(
vu
p
− g

)2

u2

p
− g2

r




we can transform the metric tensor (3.4) to the constant diagonal form

G′(y′) =




ε 0 0

0 −δ 0

0 0 λ


 . (3.55)

3.6 Flat coordinates for the σ-model on (70|1)

The nonzero components of the affine connection for this metric are

Γ1
23 = 1 Γ1

32 = 1 Γ1
33 = g

p
− y1

Γ2
13 = −1 Γ2

31 = −1 Γ2
33 = − z

p
− y2.

(3.56)

The general solution of the equations (3.13) is

ξ(y1, y2, y3) =

(
g

p
− y1

)
(iaeiy3 − ibe−iy3) −

(
z

p
+ y2

)
(aeiy3 + be−iy3) + cy3 + d, (3.57)
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where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) =

(
−

g

p
+ y1

)
cos(y3) +

(
z

p
+ y2

)
sin(y3) −

z

p
y3 + d1

ξ2(y1, y2, y3) =

(
g

p
− y1

)
sin(y3) +

(
z

p
+ y2

)
cos(y3) −

g

p
y3 + d2

ξ3(y1, y2, y3) = y3 + d3. (3.58)

and

G̃(ξ) =




p 0 z

0 p g

z g r


 . (3.59)

By the linear transformation

ỹ1 =
(√

|p|
)

ξ1 +
εz√
|p|

ξ3,

ỹ2 =
(√

|p|
)

ξ2 +
εg√
|p|

ξ3,

ỹ3 =

(√∣∣∣∣r −
z2

p
−

g2

p

∣∣∣∣

)
ξ3, (3.60)

where

ε = sign(p), λ = sign

(
r −

z2

p
−

g2

p

)

we can transform the metric tensor (3.6) to the constant diagonal form

G′(ỹ) =




ε 0 0

0 ε 0

0 0 λ


 . (3.61)

3.7 Flat coordinates for the σ-model on (1|60)

The nonzero components of the affine connection for the metric (3.7) are

Γ1
11 = −

(1 + ky1)k

(1 + 2ky1 + k2y1
2 − k2y2

2)
Γ1

21 =
k2y2

(1 + 2ky1 + k2y1
2 − k2y2

2)

Γ1
22 = −

(1 + ky1)k

(1 + 2ky1 + k2y1
2 − k2y2

2)
Γ2

22 =
k2y2

(1 + 2ky1 + k2y1
2 − k2y2

2)

Γ2
11 =

k2y2

(1 + 2ky1 + k2y1
2 − k2y2

2)
Γ2

12 = −
(1 + ky1)k

(1 + 2ky1 + k2y1
2 − k2y2

2)

Γ3
11 =

(1 + ky1)kqy1

(1 + 2ky1 + k2y1
2 − k2y2

2)
Γ3

21 = −
k2qy1y2

(1 + 2ky1 + k2y1
2 − k2y2

2)

Γ3
22 =

q(−1 + k2y2
2 − ky1)

(1 + 2ky1 + k2y1
2 − k2y2

2)
.

(3.62)
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The general solution of the equations (3.13) is

ξ(y1, y2, y3) =
(qa + 4kb)

4k2
ln (1 + k(y1 − y2)) +

(qa + 4kc)

4k2
ln (1 + k(y1 + y2))

−
qa

2k
y1 +

1

4

(
qa(y2

1 − y2
2)

)
+ ay3 + d. (3.63)

where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) =
1

2k
ln(1 + k(y1 − y2)) +

1

2k
ln(1 + k(y1 + y2)) + d1

ξ2(y1, y2, y3) = −
1

2k
ln(1 + k(y1 − y2)) +

1

2k
ln(1 + k(y1 + y2)) + d2

ξ3(y1, y2, y3) =
q

4k2
ln(1 + k(y1 − y2)) +

q

4k2
ln(1 + k(y1 + y2)) −

q

2k
y1

+
q

4
(y1

2 − y2
2) + y3 + d3. (3.64)

and

G̃(ξ) =




0 0 −k

0 q 0

−k 0 0


 . (3.65)

By the linear transformation

y′1 =

(
1

2

√
|2k|

)
ξ1 +

(
1

2

√
|2k|

)
ξ3,

y′2 = (
√

|q|)ξ2,

y′3 =

(
1

2

√
|2k|

)
ξ1 −

(
1

2

√
|2k|

)
ξ3, (3.66)

where

ε = sign(k), δ = sign(q)

we can transform the metric tensor (3.7) to the constant diagonal form

G′(y′) =




−ε 0 0

0 δ 0

0 0 ε


 . (3.67)

3.8 Flat coordinates for the σ-model on (5ii|60)

The general solution of the equations (3.13) is

ξ(y1, y2, y3) = −
(2ey2qwa + (q(1 + 2w)a + 2wb)y2 + e−(y1+y2)qa(2 − w))

4w2

−
(ey1+y2qw2a)

4w2
+

(qa(w2 − 1) + 4wc) ln(1 + (−1 + e−(y1+y2)))

4w2

+
(qa(1 + 2w) + 2wb) ln(−2w + ey2w + e−y1(1 + w))

4w2
+ ay3

+
(qwa + 2wb)(y1 + y2)

4w2
+

ey1qa(1 + w)

2w
+

qa(y1 + y2)

4w2
+ d (3.68)
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where a, b, c, d are integration constants. When we choose the initial conditions (3.14) then

the flat coordinates in terms of the group coordinates are

ξ1(y1, y2, y3) = −

(
ln(1 − w + e−(y1+y2)w) + ln(−2wey1 + ey1+y2w + 1 + w)

2w

)
+ d1

ξ2(y1, y2, y3) =

(
ln(−2wey1 + ey1+y2w + 1 + w) − ln(1 − w + e−(y1+y2)w)

2w

)
+ d2

ξ3(y1, y2, y3) = −

(
2qe−y2w2 + qwe−(y1+y2) − 2qwey1 − qw2e−(y1+y2) + qwey1+y2

4w2

)

+

(
2e−y2qw2 − qw2 + e−(y1+y2)q ln(1 − w + e−(y1+y2)w)

4w2

)
ey1+y2

+
q

4w2
ln(−2we−y2 + w + e−(y1+y2) + e−(y1+y2)w) +

q

4w2
(y2 + y1)

+y3 + d3 (3.69)

and

G̃(ξ) =




0 0 w

0 q 0

w 0 0


 . (3.70)

By the linear transformation

y′1 =
1

2

(√
2 |w|

)
ξ1 +

1

2

(√
2 |w|

)
ξ3,

y′2 = (
√

|q|)ξ2,

y′3 =
1

2

(√
2 |w|

)
ξ1 −

1

2

(√
2 |w|

)
ξ3, (3.71)

where

ε = sign(w), δ = sign(q)

we can transform the metric tensor (3.9) to the constant diagonal form

G′(y′) =




ε 0 0

0 δ 0

0 0 −ε


 . (3.72)

4. Dilaton fields in flat and curved backgrounds

4.1 General dilatons in flat backgrounds

As mentioned in the section 3, the metrics (3.1)–(3.6) were obtained from the requirement

that the vanishing β function equations are satisfied for the constant dilaton field. When

we know the flat coordinates of these models we can easily find general forms of the dilaton

fields that together with these metrics satisfy the vanishing β function equations (1.5)–(1.7).
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In the flat coordinates y′ these equations read

∂2Φ′

∂y′i∂y′j
= 0, G′ij ∂Φ′

∂y′i

∂Φ′

∂y′j
= 0. (4.1)

and from this form of the equations it is easy to see that the general form of the dilaton

field for the flat metric Gij(y) is

Φ(y) = c1ξ1(y) + c2ξ2(y) + c3ξ3(y) + c0, (4.2)

where ξj(y) are coordinates that bring the flat metric to a constant form G′
ij and cj are

real constants satisfying
3∑

j=1

G′ijcicj = 0. (4.3)

For example, the general form of the dilaton field for the σ-model (60|1) with the

metric (3.5) that follow from (4.2) and (3.30) is

Φ(y1, y2, y3) = c1

(√
|p|

)(
y1 cosh(y3) + y2 sinh(y3) +

v

p
sinh(y3) −

g

p
cosh(y3)

)

+c2

(√
|p|

)(
y1 sinh(y3) + y2 cosh(y3) +

v

p
cosh(y3) −

g

p
sinh(y3)

)

+c3

(√∣∣∣∣r +

(
g2

p
−

v2

p

)∣∣∣∣

)
y3 + c0 (4.4)

where sign(p)(c2
1 − c2

2) + sign
(
r + g2

p
− v2

p

)
c2
3 = 0.

By a similar way, i.e. as a linear combination of the flat coordinates, we can get the

general dilaton fields for the σ-models with the metrics (3.1)–(3.4) and (3.6). If the metric

is positively or negatively definite then the dilaton is constant.

We can also get dilaton fields more general than (3.8) and (3.10) for the models (1|60)

and (5ii|60). The general form of the dilaton field for the σ-model (1|60) is

Φ(y) =

√
|2k|

4k

(
c1 + c3 + (c1 − c3)

q

2k

)
ln |(1 + k(y1 − y2)) (1 + k(y1 + y2))|

+(c1 − c3)

[
1

2

√
|2k|

(
−

q

2k
y1 +

q

4
(y1

2 − y2
2) + y3

)]

+c2

√
|q|

2k
ln

∣∣∣∣
1 + k(y1 + y2)

1 + k(y1 − y2)

∣∣∣∣ + c0 (4.5)

where sign(q)c2
2 +sign(k)(c2

3 − c2
1) = 0. For special choice of constants c1 = c3 = 2k/

√
|2k|,

c2 = 0, we get the dilaton field (3.8) obtained in [2] by the Poisson-Lie T-duality. The

general form of the dilaton field for the σ-model (5ii|60) can be obtained from (3.71) as

well but it is rather extensive to display.
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By the Poisson-Lie transformation of (4.2) we can get dilatons for the σ-models dual

to the flat ones but, as mentioned before, only if the necessary conditions are satisfied. Due

to (2.6) and (4.2) the condition (2.9) reads

Rjk

(
cm

∂ξm

∂yj
−

∂

∂yj
ln|Det[ a(g) (1 + Π(g)E0) ] |

)
|y=0 = 0. (4.6)

Moreover, the matrix Π(g) vanishes for the semiabelian Manin triples and the flat coordi-

nates can be chosen to satisfy ∂ξm

∂yj
(0) = δmj . The condition (4.6) then simplifies to

Rjk

(
cj −

∂

∂yj
ln|Det a(g) |

)
|y=0 = 0. (4.7)

4.2 Dilatons for σ-models in curved background dual to (5|1)

The first σ-model in the curved background that we are going to investigate is given by

the metric

G̃ij(u) =




e−2εu3Q ε e−2εu3Q V cosh u3 − H sinhu3

ε e−2εu3Q e−2εu3Q H cosh u3 − V sinhu3

V cosh u3 − H sinhu3 H cosh u3 − V sinhu3 J


 , (4.8)

where ε = ±1 and Q,V,H, J are constants. This metric has nonvanishing Ricci tensor

but its Gauss curvature is zero. It belongs to the σ-model corresponding to the (60|1)

decomposition of the DD11 (for the notation see [7]) and Ẽ0 = G̃(0). On the other hand,

it can be obtained by the Poisson-Lie transformation (2.2), (2.3) from the metric

Gij(y) =




0 0 v e−y1

0 q e−2y1 0

v e−y1 0 0


 , (4.9)

where q, v are constants. The latter metric is flat and corresponds to the (5|1) decomposi-

tion of the DD11 and E0 = G(0).

The matrix (2.1) that transform the Manin triple (5|1) to (60|1) and the metric (4.9)

to (4.8) is

(
P T

R S

)
=




−β + 1
2α ε(β + 1

2α) −ε 0 0 0

0 0 0 ε 1 α

−ε 1 0 0 0 0

0 0 0 0 0 −ε
1
2ε 1

2 0 0 0 0

0 0 0 −1
2ε 1

2 β




, (4.10)

where relations between the constants are

q = Q−1, v = V − εH, α =
ε V + H

2Q
, β = ε

α2Q − J

2v
. (4.11)

In fact, the metric (4.8) is the most general that can be obtained by the Poisson-Lie

transformation from a flat metric corresponding to the (5|1) decomposition of the DD11.
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General form of the dilaton field for the metric (4.9) is given by (4.2) where

ξ1(y1, y2, y3) = −e−y1

ξ2(y1, y2, y3) = e−y1y2 (4.12)

ξ3(y1, y2, y3) =
q

2v
e−y1y2

2 + y3.

These are the coordinates that bring the flat metric to its constant form G′
ij = Gij(0).

The formula (2.4) for the general dilaton of the σ-model given by (4.8) yields

ΦU(y) = −2y1 − c1e
−y1 + c2e

−y1y2 + c3

( q

2v
e−y1y2

2 + y3

)
+ c0, (4.13)

where the coefficients satisfy the equation (4.3) that in this case reads

v c2
2 + 2q c1c3 = 0. (4.14)

However, this is not yet the final form of the dilaton field because it is expressed in terms

of the coordinates y of the σ-model given by (4.9) and it must be transformed to the

coordinates u of the σ-model given by (4.8). The transformation formulas between these

coordinates follow from two different decompositions of elements of the Drinfel’d double

DD11, namely from the relation

e−y1X1e−y2X2e−y3X3e−ỹ1
eX1e−ỹ2

eX2e−ỹ3
eX3 = e−u3U3e−u2U2e−u1U1e−ũ1

eU1e−ũ2Ũ2e−ũ3
eU3 ,

(4.15)

where Xj , X̃j are generators corresponding to the decomposition (5|1) of the Drinfel’d

double DD11 and Uj , Ũj are generators of the decomposition (60|1). They can be related

by (4.10). Coordinates y in terms of u are then expressed as

y1 = −ε u3,

y2 =
ε ũ1 + ũ2

2
,

y3 =
−ε u1 + u2

2
+ βu3, (4.16)

ỹ1 = β(−ũ1 + ε ũ2) − ε ũ3 +
1

2
(ũ1 + ε ũ2)(α + u1 + ε u2 + ε αu3),

ỹ2 = ε u1 + u2 + α u3,

ỹ3 = −ε ũ1 + ũ2.

We can see that unless c2 = 0, c3 = 0 the dilaton (4.13) depends on the coordinate ε ũ1 + ũ2.

It is not admissible and thus the general form of dilaton obtained by the Poisson-Lie

transformation for the metric (4.8) is

Φ̃(u) = ΦU (y(u)) = 2εu3 + c1e
εu3 + c0. (4.17)

We have checked that the vanishing β function equations for Φ̃(u) and G̃ij(u) given by

(4.8) are satisfied.
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Note that the condition c3 = 0, c2 = 0 is more strict than the necessary condition (4.7)

that implies c2 = 0 only. It means that the necessary condition (2.7) is not sufficient for

the Poisson-Lie transformation of the dilaton.

By other plurality transformations of (4.9) we can get σ-models with curved back-

ground corresponding to the decompositions (1|60) and (5.ii|60) of the DD11. For the

dilaton fields the formula (2.4) could be again used but we were not able to express the

coordinates y, ỹ in terms of u, ũ from the relation (4.15) in these cases.

4.3 Dilatons for σ-models in curved background dual to (4|1)

A bit more complicated σ-model is given by the metric G̃ij(u), where

G̃11(u) = G̃22(u) = e−2εu3Q

G̃12(u) = G̃21(u) = ε e−2εu3Q

G̃13(u) = G̃31(u) = V cosh u3 − H sinh u3 (4.18)

G̃23(u) = G̃32(u) = H cosh u3 − V sinh u3

G̃33(u) = J − Q (V − εH)2u2
3

where ε = ±1 and Q,V,H, J are constants. Again, this metric has nonvanishing Ricci

tensor and its Gauss curvature is zero. It belongs to the σ-model corresponding to the

(60|2) decomposition of the DD12 and Ẽ0 = G̃(0). Besides that it can be obtained by the

Poisson-Lie transformation (2.2), (2.3) from the metric

Gij(y) =




0 v e−y1y1 v e−y1

v e−y1y1 q e−2y1 0

v e−y1 0 0


 , (4.19)

where q, v are constants. This metric is flat and corresponds to the (4|1) decomposition of

the DD12.

The matrix (2.1) that transform the metric (4.19) to (4.18) is

(
P T

R S

)
=




−β − 1
2α ε(β − 1

2α) −ε 0 0 0

0 0 0 −ε −1 α

−ε 1 0 0 0 0

0 0 0 0 0 −ε

−1
2ε −1

2 0 0 0 0

0 0 0 −1
2ε 1

2 β




, (4.20)

where the relations between the constants are

q = Q−1, v = V − εH, α = −
ε V + H

2Q
, β = ε

α2Q − J

2v
. (4.21)

The general dilaton field for the σ-model with the flat metric (4.19), which is a special

case of the metric (3.3), is obtained by insertion of the flat coordinates (3.47) into (4.2)

ΦU(y) = −2y1 + c0 − c1e
−y1 + c2

(
v

q

(
y1 + e−y1

)
+ e−y1y2

)
+

c3

(
v

q
(y1 − sinh y1) +

q

2v
e−y1y2

2 +
(
e−y1 + y1 − 1

)
y2 + y3

)
(4.22)
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and the constants cj satisfy

v c2
2 + 2q c1c3 = 0.

The formula (2.4) for the dilaton of the σ-model with the the curved metric (4.18) then

yelds ΦU = −2y1 + Φ(y) but to get the final form of the dilaton field we must transform it

to the coordinates u. The transformation formulas follow from decompositions of elements

of the Drinfel’d double DD12, namely from the relation (4.15) where Xj , X̃j are generators

corresponding to the decomposition (4|1) and Uj , Ũj , related by (2.1) and (4.20), correspond

to the decomposition (60|2). Coordinates y in terms of u are then expressed as

y1 = −ε u3,

y2 = −
ε ũ1 + ũ2

2
,

y3 =
−ε u1 + u2

2
+ βu3, (4.23)

ỹ1 = β(−ũ1+εũ2)+
1

2
(ũ1+εũ2)(−α + u1 + ε u2 − ε αu3) −

1

4
ũ2

1 +
1

2
ε ũ1ũ2 +

1

4
ũ2

2 − ε ũ3,

ỹ2 = −ε u1 − u2 + α u3,

ỹ3 = −ε ũ1 + ũ2.

In order that the dilaton does not depend on the coordinate ε ũ1 + ũ2 = y2 we must set c2 =

0, c3 = 0 and the general form of the dilaton obtained by the Poisson-Lie transformation

for the metric (4.18) is

Φ̃(u) = ΦU (y(u)) = 2εu3 + c1e
εu3 + c0. (4.24)

The vanishing β function equations are satisfied.

4.4 Dilatons for σ-models in a flat background dual to (4|1)

In the previous subsections we have used the general dilatons of flat models for producing

dilatons of the dual curved models. An interesting and important question is whether

the general dilatons enable constructing dual dilatons in cases where the constant dilatons

fail. More precisely, are there examples where the constant dilaton cannot produce a dual

dilaton independent of the auxiliary variables but a more general one can?

We shall show that there are examples where the constant dilatons do not satisfy

the necessary condition (2.5) for the Poisson-Lie transformation but a more general do.

Unfortunately, this does not give definite answer to the question because for construction

of the dual dilaton we have to find the transformation of coordinates given by (4.15) which

may be a difficult problem.

An example of the flat σ-model for which the trivial dilaton is not dualizable is given

by the metric

G̃ij(u) = ∆(u)




Q − 4QV 2u2
1 V u1 + Q

(
4V 2u1u2 − 1

)
V

V u1 + Q
(
4V 2u1u2 − 1

)
−4QV 2u2

2 + Q + 2V u1 V

V V 0


 , (4.25)
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where

∆(u) = (1 − V 2(u1 + u2)
2).

It corresponds to the decomposition (2|60) of the Drinfel’d double DD12 and is related to

the metric (4.19) by the Poisson-Lie transformation (2.2), (2.3) where

(
P T

R S

)
=




0 0 0 0 0 1

1 −1 0 0 0 0

0 0 0 1 1 0

0 0 1 0 0 0

0 0 0 1
2 −1

2 0
1
2

1
2 0 0 0 0




, q = 4Q, v = 1/V. (4.26)

Both the metrics (4.19) and (4.25) are flat so that their general dilaton fields can be

obtained by insertion of the flat coordinates into (4.2). By this way we get dilaton (4.22)

and

Φ̃(u) = c̃0 + c̃1 arctanh (V (u1 + u2)) +

c̃2

[
ln |1 − V 2(u1 + u2)

2| + 4QV (u1 − u2)
]
+

c̃3

[
8Qu3 −

1

V 2
arctanh (V (u1 + u2)) + (4.27)

2Q(u1 + u2)

(
6u1 − 2u2 +

1

QV

)
− 4Q(u1 − u2)

2(1 + 8QV (u1 + u2))

]
,

where the coefficients satisfy the equation

c̃1c̃3 + c̃2
2 V 2 = 0. (4.28)

It means that we have two flat metrics related by the Poisson-Lie transformation, we

know their general dilatons, and we can ask if at least some parts of the dilatons can be

transformed one to the other.

The necessary condition (4.7) for the dilaton transformation given by the matrix (4.26)

is not satisfied by the constant dilaton but only by

Φ(y) = c0 − 2 e−y1 (4.29)

obtained from (4.22) by setting c1 = 2, c2 = 0, c3 = 0. The formula (2.4) for the dual

dilaton corresponding to the metric (4.25) then gives

ΦU = c0 − 2 e−y1 − 2y1 + ln |1 − V 2(u1 + u2)
2|. (4.30)

We can see by comparing the number of free constants in (4.27) and (4.30) that the Poisson-

Lie transformation can produce only a special form of the dilaton for the dual model. The

problem however is that we do not know if y1 depends on ũj or not because we are not

able to solve the relation (4.15) in this case.

A similar situation, namely that the constant dilaton does not satisfy the necessary

condition for construction of the dual dilaton but a more general does, happens in the

models following from the pluralities (4|1) ∼= (4ii|60) and (5|1) ∼= (5ii|60) ∼= (1|60). Unfor-

tunately, once again in these case we are not able to solve the relation (4.15).
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5. Conclusions

The Poisson-Lie T-duality does not preserve the geometric properties of the backgrounds

so that it can relate σ-models in curved and flat backgrounds. We have used this fact to

solve the vanishing β function equations (1.5)–(1.7) in curved backgrounds applying the

Poisson-Lie transformation (2.4) to general dilatons for the flat metrics.

The equations for the dilaton field of the flat σ-model are easily solvable in the flat

coordinates. To get the general dilatons for the flat metrics in terms of the group coordi-

nates we need the transformations between the group and flat coordinates of the σ-models.

These transformations were found for three-dimensional flat σ-models and their explicit

forms were presented in the Section 3. The transformations can be used for many other

purposes. The equations of motion of the σ-models with the flat metrics are easily solvable

in terms of the flat coordinates. If the investigated models are Poisson-Lie T-dual or plural

to σ-models with nontrivial backgrounds then the transformation to the group coordinates

offers a possibility to find classical solutions in the nontrivial background. An example of

such solution was given in [8] and other models are being solved now.

In the section 4, new dilaton field for the metrics (4.8) and (4.18), both having non-

trivial Ricci tensor, was found. It is the most general dilaton that can be obtained by the

Poisson-Lie transformation from the general dilatons (4.13), (4.22) of the dual flat metrics

(4.9) and (4.19). These cases show that the necessary condition (2.7) for the applicability

of the formula (2.4) is not sufficient. An interesting but yet unsolved question is whether

the dilaton (4.17) obtained by the Poisson-Lie transformation is the general solution of the

vanishing β function equations for the curved backgrounds (4.8) and (4.18). The results of

transformations of dual flat models indicate that this need not be so.

In the subsection 4.4 we have tried to answer the question whether the general dilatons

enable to satisfy the conditions (2.5) and (2.9) for construction of dual dilatons in cases

where the constant dilatons fail. We were able to find examples for which the necessary con-

dition (2.9) is satisfied only for a nonconstant dilaton, nevertheless, it is not clear whether

the nonconstant dilaton can be transformed to a dual one. The reason is that in these cases

we are not currently able to determine the dependence of the relevant y coordinates on the

variables u, ũ implicitly given by (4.15). On the other hand, there are cases when only the

constant dilaton may be inserted into the formula (2.4) because all y coordinates depend

on the inadmissible auxiliary variables ũ. Examples of this are models corresponding to

the dual Manin triples (1|2) ∼= (2|1), (1|70) ∼= (70|1) whose dilatons were published in [2].

The examples investigated in this paper show that there are many dual models with

dilatons that cannot be related by the formula (2.4). That might indicate that a more

general prescription for the dilaton transformation may exist.
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[5] C. Klimč́ık, Poisson-Lie T-Duality, Nucl. Phys. 46 (Proc. Suppl.) (1996) 116

[hep-th/9509095].

[6] L.D. Landau and E.M. Lifshitz, The classical theory of fields, Pergamon Press, London 1987.
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[8] L. Hlavatý, Classical solution of a sigma-model in curved background, Phys. Lett. B 625

(2005) 285 [hep-th/0506188].

– 25 –

http://jhep.sissa.it/stdsearch?paper=07%282002%29014
http://xxx.lanl.gov/abs/hep-th/00205245
http://jhep.sissa.it/stdsearch?paper=10%282004%29045
http://xxx.lanl.gov/abs/hep-th/0408126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB351%2C455
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB351%2C455
http://xxx.lanl.gov/abs/hep-th/9502122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C46%2C116
http://xxx.lanl.gov/abs/hep-th/9509095
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA17%2C4043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA17%2C4043
http://xxx.lanl.gov/abs/math.qa/0202210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB625%2C285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB625%2C285
http://xxx.lanl.gov/abs/hep-th/0506188

